Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol ; 97(3): e0003823, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2242074

ABSTRACT

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Subject(s)
Infectious bronchitis virus , Mamastrovirus , Mutagenesis, Insertional , Animals , Humans , 3' Untranslated Regions/genetics , Chickens/virology , Infectious bronchitis virus/genetics , Mamastrovirus/genetics , Mutagenesis, Insertional/genetics , Poultry Diseases/virology , RNA, Viral/genetics , Virus Replication/genetics , RNA Stability/genetics , Sequence Deletion/genetics
2.
Virus Res ; 310: 198674, 2022 03.
Article in English | MEDLINE | ID: covidwho-1799665

ABSTRACT

Tracking the evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through genomic surveillance programs is undoubtedly one of the key priorities in the current pandemic situation. Although the genome of SARS-CoV-2 acquires mutations at a slower rate compared with other RNA viruses, evolutionary pressures derived from the widespread circulation of SARS-CoV-2 in the human population have progressively favored the global emergence, though natural selection, of several variants of concern that carry multiple non-synonymous mutations in the spike glycoprotein. These are often placed in key sites within major antibody epitopes and may therefore confer resistance to neutralizing antibodies, leading to partial immune escape, or otherwise compensate infectivity deficits associated with other non-synonymous substitutions. As previously shown by other authors, several emerging variants carry recurrent deletion regions (RDRs) that display a partial overlap with antibody epitopes located in the spike N-terminal domain (NTD). Comparatively, very little attention had been directed towards spike insertion mutations prior to the emergence of the B.1.1.529 (omicron) lineage. This manuscript describes a single recurrent insertion region (RIR1) in the N-terminal domain of SARS-CoV-2 spike protein, characterized by at least 49 independent acquisitions of 1-8 additional codons between Val213 and Leu216 in different viral lineages. Even though RIR1 is unlikely to confer antibody escape, its association with two distinct formerly widespread lineages (A.2.5 and B.1.214.2), with the quickly spreading omicron and with other VOCs and VOIs warrants further investigation concerning its effects on spike structure and viral infectivity.


Subject(s)
Mutagenesis, Insertional , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , COVID-19 , Epitopes , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Ann Saudi Med ; 41(3): 141-146, 2021.
Article in English | MEDLINE | ID: covidwho-1261414

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism may play a role in the pathogenesis of coronavirus-19 disease (COVID-19). OBJECTIVES: Investigate the relationship between ACE I/D polymorphism and the clinical severity of COVID-19. DESIGN: Prospective cohort study. SETTING: Tertiary care hospital. PATIENTS AND METHODS: The study included COVID-19 patients with asymptomatic, mild, and severe disease with clinical data and whole blood samples collected from 1 April 2020 to 1 July 2020. ACE I/D genotypes were determined by polymerase chain reaction and agarose gel electrophoresis. MAIN OUTCOME MEASURE: ACE DD, DI and II genotypes frequencies. SAMPLE SIZE: 90 cases, 30 in each disease severity group. RESULTS: Age and the frequency of general comorbidity increased significantly from the asymptomatic disease group to the severe disease group. Advanced age, diabetes mellitus and presence of ischemic heart disease were independent risk factors for severe COVID-19 [OR and 95 % CI: 1.052 (1.021-1.083), 5.204 (1.006-26.892) and 5.922 (1.109-31.633), respectively]. The ACE II genotype was the dominant genotype (50%) in asymptomatic patients, while the DD genotype was the dominant genotype (63.3 %) in severe disease. The ACE II geno-type was protective against severe COVID-19 [OR and 95% CI: .323 (.112-.929)]. All nine patients (8.9%) who died had severe disease. CONCLUSIONS: The clinical severity of COVID-19 infection may be associated with the ACE I/D polymorphism. LIMITATIONS: Small sample size and single center. CONFLICT OF INTEREST: None.


Subject(s)
COVID-19/genetics , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Severity of Illness Index , Adult , Aged , Base Sequence , COVID-19/diagnosis , Female , Follow-Up Studies , Genetic Markers , Genotype , Genotyping Techniques , Humans , Male , Middle Aged , Mutagenesis, Insertional , Prospective Studies , Sequence Deletion
4.
Arch Virol ; 165(12): 3011-3015, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-833995

ABSTRACT

The hemagglutinin-esterase (HE) protein of betacoronavirus lineage A is a secondary receptor in the infection process and is involved in the emergence of new betacoronavirus genotypes with altered host specificity and tissue tropism. We previously reported a novel recombinant bovine coronavirus (BCoV) strain that was circulating in dairy cattle in China, but this virus was not successfully isolated, and the genetic characteristics of BCoV are still largely unknown. In this study, 20 diarrheic faecal samples were collected from a farm in Liaoning province that had an outbreak of calf diarrhea (≤ 3 months of age) in November 2018, and all of the samples tested positive for BCoV by RT-PCR. In addition, a BCoV strain with a recombinant HE (designated as SWUN/A1/2018) and another BCoV strain with a recombinant HE containing an insertion (designated as SWUN/A10/2018) were successfully isolated in cell culture (TCID50: 104.25/mL and 104.73/mL, respectively). Unexpectedly, we identified the emergence of a novel BCoV variant characterized by a 12-nt bovine gene insertion in the receptor-binding domain in a natural recombinant HE gene, suggesting a novel evolutionary pattern in BCoV.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Diarrhea/veterinary , Hemagglutinins, Viral/genetics , RNA, Viral/genetics , Viral Fusion Proteins/genetics , Animals , Cattle , Cattle Diseases/pathology , Cattle Diseases/virology , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Coronavirus, Bovine/classification , Coronavirus, Bovine/isolation & purification , Diarrhea/epidemiology , Diarrhea/pathology , Diarrhea/virology , Evolution, Molecular , Feces/virology , Gene Expression , Genotype , Models, Molecular , Mutagenesis, Insertional , Phylogeny , Protein Structure, Secondary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
5.
Proc Natl Acad Sci U S A ; 117(26): 15193-15199, 2020 06 30.
Article in English | MEDLINE | ID: covidwho-595720

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an immediate, major threat to public health across the globe. Here we report an in-depth molecular analysis to reconstruct the evolutionary origins of the enhanced pathogenicity of SARS-CoV-2 and other coronaviruses that are severe human pathogens. Using integrated comparative genomics and machine learning techniques, we identify key genomic features that differentiate SARS-CoV-2 and the viruses behind the two previous deadly coronavirus outbreaks, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), from less pathogenic coronaviruses. These features include enhancement of the nuclear localization signals in the nucleocapsid protein and distinct inserts in the spike glycoprotein that appear to be associated with high case fatality rate of these coronaviruses as well as the host switch from animals to humans. The identified features could be crucial contributors to coronavirus pathogenicity and possible targets for diagnostics, prognostication, and interventions.


Subject(s)
Betacoronavirus/genetics , Evolution, Molecular , Genome, Viral , Nucleocapsid Proteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Host Specificity , Humans , Machine Learning , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Mutagenesis, Insertional , Nuclear Localization Signals/genetics , Nucleocapsid Proteins/chemistry , Phylogeny , SARS-CoV-2 , Sequence Homology , Spike Glycoprotein, Coronavirus/chemistry , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL